Safe, Clean Water Program Fiscal Year 2021-2022

WASC Review Sheet

Project Name
Project Lead
Total SCW Funding Requested
Phases for which SCW Funding is being requested

Question	Yes/No	Notes
Does this project assist in achieving compliance with MS4 permit? If Yes, explain how.		
Does the project provide DAC benefits (refer to the ordinance for definition)? If Yes, explain how.		
Does the project provide benefits to the municipality? If Yes, explain how.		
Does the project prioritize nature- based solutions? If Yes, explain how.		
Does this meet the goals of the program stated in the ordinance (refer to Section 18.04)		
Does the project/scientific study have a nexus to stormwater and urban runoff capture and pollution reduction? If yes, explain how.		

Safe, Clean Water Program Fiscal Year 2021-2022

WASC Review Sheet

Question	Yes/No	Notes
What is the plan for community engagement and what efforts have been made to date?		
What is the anticipated CEQA and permitting needs and how is this incorporated in the cost and schedule?		
Why is this the best location for this type of project?		
Were other alternatives considered? Why is this the best solution?		
How was the Project developed? (ie IRWMP/EWMP process, community engagement, etc…)		
If awarded partial funding by the WASCs, could the project fulfill their stated scope and benefits? If not funded, would the WASC lose the opportunity to fund this project at future rounds?		
General Notes (and follow up questions regarding any topic in the feasibility study/project submittal)		
Public Comments		

Cerritos Sports Complex

Infrastructure Program City of Cerritos Presented by Mike O'Grady and John Hunter

Project Overview

Design development for a regional stormwater system including capture, directed infiltration, and a reuse treatment facility

- Primary and Secondary Objectives:
 - Improve water quality and supply within Coyote Creek and the downstream San Gabriel River Watershed
 - Offset irrigation water demand at the park
 - Improve the park's public play space and other facilities
 - Install a new bio-filtration natural area along the bike path
 - Educate the public on local water supply and demands
 - Benefit nearby disadvantaged communities
- Project Status: Design only
- Total Funding Requested: \$2,408,000 (\$1,940,800 in Year One)

The project is located in the City of Cerritos, within the Lower San Gabriel River Watershed Area

DACs nearby will benefit directly from park facility improvements, and downstream DACs will benefit from improved water quality

- The Cerritos Sports Complex Project has an extensive drainage area of 4403 acres, encompassing portions of:
 - City of Artesia (572.39 acres)
 - City of Cerritos (836.57 acres)
 - City of Norwalk (2113.44 acres)
 - City of Santa Fe Springs (792.54 acres)
 - Unincorporated LA County (88.06 acres)
- The drainage area encompasses an array of land uses, including the following breakdown of impervious acreage:

Land Use Type	Percent Impervious	Acre
Single Family Residential	31%	874.20
Commercial	9%	253.80
Industrial	13%	366.60
Institutional	12%	338.40
Multi Family Residential	7%	197.40
Secondary Roads and Alleys	24%	676.80
Urban Open Space	4%	112.80

Background and Site Conditions

- The site was identified in the LSGR WMP to help achieve compliance with the MS4 Permit and TMDL milestones
- The LSGR Watershed Management Group funded percolation testing and the development of a Feasibility Study (including 10% design plans) in early 2019
- The project was initially submitted to the WASC for consideration in 2019, but was ultimately not included in the SIP; since then, the project configuration has been amended and only design funds are being requested
- Site transitioned from farmland to a landfill in the 1960s, with the eastern portion unaffected by the landfill
- Site was converted to a park in 1976 with 5 baseball fields, 6 soccer fields, a sports office, a concessions stand, and a playground area
- Infiltration data and borehole logs indicate that the perimeter of the site to the east and south is suitable for low levels of infiltration while the larger area of the proposed site is more suited for storage for irrigation and filtration

Details

Since the initial 10% design, the project has been relocated 300 feet southeast of the landfill

The northern diversion from Shoemaker is conceptual only

- The long-term plans (upon construction funding) call for this project to be divided into two phases:
 - Phase 1 will divert flow from a 30-foot wide channel to a regional stormwater capture and filtration facility located beneath the play surface of the existing park
 - The water quality and water objectives will be accomplished through runoff/pollutant capture, and filtration, reuse, and release
 - Phase 2 will divert from a 10-foot storm drain, but this will require agreements from County Parks and Rec and is referenced for background information (not as part of this application)
- Preliminary hydrological analyses and a utility review have been conducted
- Stormwater capture optimization methods were used when considering project alternatives

Cost & Schedule

Phase Costs				
Phase	Description	Cost	Completion Date	
Design	This proposal is for a 2- year design and permitting	\$ 1,940,800.00	06/2022	
Design	second year of a two year design phase includes permitting	\$ 467,200.00	06/2023	
Construction	Mobilization, Site Preparation, Initial Construction of Storage Gallery, SWPPP Implementation	\$ 4,558,500.00	06/2024	
Construction	Continued Construction of Storage Gallery, Channel Diversion, Begin Electrical and Controls, Wet Well and Conveyance, Water Reclaim Unit	\$ 11,451,750.00	06/2025	
Construction	Complete Gallery, Piping and Diversion, Complete Electrical, Landscape and Irrigation, Amenities, Startup and Testing	\$ 3,789,750.00	06/2026	
Construction	Construction phase contingency (20% of Years 3-5 total)	\$ 3,960,000.00	06/2026	
Total Funding:		\$ 26,168,000.00		

Annual Cost Breakdown				
Annual Maintenance Cost:	\$ 30,000.00			
Annual Operation Cost:	\$ 5,600.00			
Annual Monitoring Cost:	\$ 18,000.00			
Project Life Span:	50 years			

Funding Requested by Year & Phase				
Year	SCW Funding Requested	Phase	Efforts during Phase and Year	
Year 1	\$ 1,940,800.00	Design	Pre-design, Design and public and community outreach,	
Total Year 1	\$ 1,940,800.00			
Year 2	\$ 467,200.00	Planning	Environmental Planning and Permitting Public and Community Outreach	
Total Year 2	\$ 467,200.00			
Total Funding:	\$ 2,408,000.00			

• Upon completion of design, a future SCWP funding request may be submitted for construction, operations and maintenance, and monitoring

Water Quality Benefits

- The project will achieve its water quality objectives through runoff/pollutant capture, filtration, reuse and release
- With the reduction in scope from the previous application, the project will capture all dry weather from the 30x14 foot channel; the proposed storage reservoir has a capacity of 17 acre-feet
- The project will capture runoff from a 4403 acres drainage area that includes portions of the City of Cerritos, City of Artesia, City of Norwalk, City of Santa Fe Springs, and Unincorporated LA County
- The project will address zinc and bacteria (the primary and secondary limiting pollutants identified in the LSGR WMP, respectively) in addition to other pollutants
- This project is part of the Artesia drain corridor, which includes projects at Artesia Park (proposed) and Hermosillo Park (SCWP funding approved)

Water Supply Benefits

- There is significant opportunity for this project to provide multiple benefits at the nexus of water supply and stormwater:
- Onsite Irrigation Use: the project will utilize dry flows to provide high quality water to blend with the existing irrigation sources and potentially offset most of the park's irrigation needs
 - Dry weather flows are estimated to be 0.4 cfs with an average annual inflow of 3110.806 ac-ft
 - Pumping and filtration will sanitize and redirect captured stormwater to the irrigation system; cleaned overflow will be discharged back into Coyote Creek.
- Water Recycling: further capacity study would be required to determine if discharges to nearby sanitary sewer lines are feasible
 - The modeled total potential discharge to the sanitary sewer for augmented water supply is 130 acre-feet per year

Community Investment Benefits and Nature-Based Solutions

- Flood Management:
 - The project's detention capabilities can contribute towards enhanced flood retention capabilities of the storm drain system
- Enhanced Park Spaces and New Recreational Opportunities:
 - The underground structure will be installed east of 4 baseball fields; surrounding facilities will be improved
 - A bioswale area will be installed with native vegetation
- Improved Public Access to Waterways:
 - A natural area and bioswale will be installed on the city property along the existing Coyote Creek bike path
 - The bioswale is sized to convey flow from the parking lot and roadways within the Sports Complex
- Reduced Heat Island Effect:
 - Native trees, shrubs, and grasses are to be installed at select spots impacted by construction throughout the park

- The LSGR Watershed Management Group funded the Cerritos Sports Complex Project Feasibility Study and 10% Design Plans in early 2019
- The funding request includes \$100,000 for public outreach, including community development meetings, informational signage, and/or social media outreach
- The City plans to conduct outreach to potential project partners, including community organizations

Robernos atrairetrei

REUNIR IK A

os pourieis makes om nosim Lugae)

x AN

inA

TAL AND THE A

Stormwater Treatment and Reuse System (STAR System) Hacienda Park

Funding Program (IP/TRP) Project Lead: City of La Habra Heights Presenter: Christopher Rochfort (STAR Water USA LLG)

Project Overview

The project aims to capture, infiltrate or treat and store stormwater runoff from Hacienda Park and nearby catchment for beneficial reuse.

Primary Objective	Secondary Objectives
1. Protect waterways & habitats from contaminated run-off	1. Reduce impervious surface ratio in The Park
2. Capture, infiltrate, collect to reuse treated stormwater	2. Reduce heat island effect in the parking lots
3. Use Nature-Based systems and technologies as BMP	3. Enhance the natural amenity in The Park

Total SCW Funding Requested		\$859,000		
√ Planning V Design		✓ Construction	√ O & M	

Disadvantaged Communities (DAC): N/A

The Park (Hecienda Park)

1885 Hacienda Rd, La Habra Heights

Capture Area: Hacienda Rd, Encanada Dr, Parking lots, Roofs, Horse track

Project Background

WHY	HOW
The City of La Habra Heights assesses its water quality and quantity needs and measures to protect water sensitive areas.	STAR System replaces existing dish drain, which captures, treats, conveys and stores stormwater for reuse.
The Park is one of the City's key community assets, identified as priority area for stormwater treatment and reuse systems.	Water-efficient landscaping (gardens) grows trees and drought-enduring plants, provide tree shading and reduce the heat island effect.
Impermeable surface of Parking lots and nearby roads discharges contaminated runoff to the La Mirada Creek.	Reactive Filter Amendment on the grass area increases the infiltration rate and water holding capacity.
	ABF cartridges around the horse riding track removes bacteria and nutrients.

- Effectively treats contaminated runoff from the site and protects nearby creek
- Provide reusable water for onsite irrigation of the Park
- Encourage the use of recycled products in stormwater management
- Increase green space area and reduce heat island effect from the site
- Improve permeability/infiltration rate/water retention of the Park

(10,000m²)

(10,000m²)

5

Cost & Schedule

Phase	Description			Cost	Со	mpletion Date
Design	Project engineering design			\$ 90,000.00		07/2021
Planning	Detailed Proje	Detailed Project planning				09/2021
Construction	Project Constru	uction stage		\$ 708,000.00		04/2022
Construction	Initial assessment of system performance			\$ 16,500.00		09/2022
TOTAL				\$ 849,500.00		
	Reused water quantity	F	Reused w	vater quality		Vegetation
Annual	Inflow	Miscellaneous	pH, TSS,	, EC		Establishment
Annual monitoring activities	Inflow Outflow for reuse	Miscellaneous Nutrients	pH, TSS, TN, TP	, EC		Establishment Attrition
Annual monitoring activities	Inflow Outflow for reuse (irrigation onsite)	Miscellaneous Nutrients Heavy metals	pH, TSS, TN, TP Cu, Zn,	, EC Pb, Al, Fe		Establishment Attrition Plant life span
Annual monitoring activities	Inflow Outflow for reuse (irrigation onsite) Outflow to discharge	Miscellaneous Nutrients Heavy metals Others	pH, TSS, TN, TP Cu, Zn, I hydroca	, EC Pb, Al, Fe arbon, Micro-plastic, E.	.Coli	Establishment Attrition Plant life span Resilience

Project Life Span: up to 60 years Life-Cycle Cost for Project: \$856,296.62 (5 years)

Funding Request

Year	SCW Funding Requested	Phase	Efforts during Phase and Year
1	\$ 585,000.00	Planning Design Construction	Project Planning, Project engineering Design, Earth work for the trenches and water-efficient landscape
2	\$ 269,500.00	Construction O & M	Purchase products, construction for trench system, water efficient rain gardens and features Initial monitoring for system performance
3	\$ 1,500.00	Monitoring	Annual monitoring and testing
4	\$ 1,500.00	Monitoring	Annual monitoring and testing
5	\$ 1,500.00	Monitoring	Annual monitoring and testing
TOTAL	\$ 859,000.00		

 Future potential SCW funding requested for continuing monitoring, cartridges and media replacement for every 10 – 15 years.

Water quality

- Water supply
- Community Investment Benefits
- Nature Based Solutions
- Leveraged Funds and Community Support

Water Quality & Water Supply Benefits

Water quality

Primary mechanisms (Wet Condition)

- Storm Treatment and Reuse (STAR) system captures polluted runoff and treated by the Advanced Biofiltration Filter cartridges placed beneath the trench grates.
- The Advanced Biofiltration Filter Cartridges, contains Reactive Filter Media, can remove multi contaminants from the runoff by the natural treatment processes (physical, chemical & biological).
- The treated runoff can be either stored in the modular channel underdrain installed under the cartridges or safe discharge to nearby La Mirada Creek.
- Coring with Reactive Filter Amendment to the grass area increases the infiltration rate.
- Water efficient landscaping (gardens) provides more tree shades and reduces heat island effect from the parking lot

Water Quality & Water Supply Benefits

Catchment Features

Total catchment area	24-hr Capacity:	Annual Treated runoff		Water Quality Cost Effectiveness:
3.85 acre	1.3157 ac-ft	1.61 ac-ft reused for irrigation Safe discharge to La Miranda Creek		>1 (24-hour BMP Capacity) / (Construction Cost in \$Millions) = 1.5)
		0.84 ac-ft,	0.77 ac-ft	

Pollutants removal

Group	Pollutant	Removal (own value)	Removal (Module generated)
Primary Pollutants	Hydrocarbons, Cu, Pb, Zn, Fe, Al, TSS	90%	100%
Secondary Pollutants	TN	63.5	100%

Community Investment Benefits and Nature Based Solutions

- Community Investment Benefits
- Nature Based Solutions

Leveraging Funds and Community Support

Leveraged Funds and Community Support

- Leveraging Funds: N.A.
- Community Support
 - Local community representative expresses strong support for the alternative water supply and protection of the waterways by using innovative solutions in the area of climate uncertainty.
- Community outreach and engagement
 - Meetings with community representatives
 - Develop a Community and Stakeholder Engagement Strategy, identify key opportunities for engagement, potential risks and mitigation strategies
 - Drive awareness of the project's benefits and provide updates via regular communications
 - Act as the liaison between community members and the project team, responding to any issues or concerns in a timely and effective manner

Questions?

Rotemas atmiretreit makars kofi

REUNIR # A

os polotieu hakse 54 rosan Lugar)

12 Mart

IN

nel Balli (TEla si)

Gateway Area Pathfinding (GAP) Analysis

Scientific Studies Program

Lead Agency: Gateway Water Management Authority Presenters: Richard Watson, Richard Watson and Associates Brad Wardynski, Craftwater Engineering

Study Overview

Initiates a locally driven, scientific approach to find and analyze new projects in a watershed context and plot a project-by-project pathway to safe, clean water

Nexus: This study will support the Gateway Groups and other stakeholders in the LLAR and LSGR Watershed Areas by enhancing watershed plans with new, implementation-oriented project recommendations for water quality improvement, water supply augmentation, and community investments

Problem Statement

- Groups have made excellent progress implementing Watershed Management Programs (WMPs)
- Now they need more project-by-project details (what to build, where, and in what order)
- As more projects go into the ground, need to understand how overall system works together
 - e.g., What if a project is proposed upstream from another? How does that impact performance and SCWP benefits?
- Need to leverage watershed science to better align WMPs and SCWP goals

- Objectives, Outcomes, & Methodology
- **Q** Identify new, high-impact, multi-benefit projects
- **Explore** how projects interact as a system at the watershed scale
- Articulate project-specific roadmap to stormwater quality compliance
 - **Translate** findings into Stormwater Investment Plan recommendations

• Regional Examples and Collaboration

RIO HONDO/SAN GABRIEL RIVER REVISED WMP

watershed plan to articulate a project-by-project pathway to clean water

- Focused approach improved compliance certainty and stretched stormwater investments
- Upstream from LSGR and LLAR groups

UPPER LA RIVER PRESIP STUDY

potential boost in efficiency, freeing up funding for other watershed and community investments

- Recently funded and initiated
- Closely coordinating with study leads
- Upstream from LLAR group

BUILDING CONSENSUS FOR BALANCED WATERSHED PROJECTS

matching funds to analyze costeffective pathways to achieve multiple SCW goals

- Explores how to balance compliance, nature-based solutions, and community investments
- Closely coordinating with study leads
- Proposed in LLAR and LSGR

Cost & Schedule

Phase	Description	Cost	Completion Date
1	Identify and Reconcile Watershed-Wide Opportunities	\$63k	Funding Transfer + 6 months (February 2022)
2	Model Watershed-Scale Project Interactions and SCWP Scoring	\$49k	Funding Transfer + 8 months (May 2022)
3	Cross-Reference Projects with Recipes for Compliance and Plot Initial Path to Clean Water	\$24k	Funding Transfer + 10 months (July 2022)
4	Stormwater Investment Plan Recommendations	\$14k	Funding Transfer + 12 months (September 2022)
TOTAL		\$150k	

Funding Request

WASC	Year 1	Year 2	Year 3	Year 4	Year 4
LLAR	\$75k	Although futur	re phases are expe	cted, the study app	olicants are not
LSGR	\$75k	asking the	WASC to earmark	additional funds a	it this time
TOTAL	\$150k				

The GAP Analysis will bolster certainty that SCWP investments (i.e., taxpayer dollars) will yield defensible, meaningful, measurable, and achievable improvements to the **environment**, and subsequently, to **local communities and local water supply**.

Robernos atrairetrei

REUNIR IK A

os pourieis makes om nosim Lugae)

x AN

inAl

TAL AND THE I

Overview of Pathogen Reduction Study

Presented by Richard Watson, Richard Watson & Associates, Inc. (RWA)

Project Lead: Gateway Water Management Authority

Presentation to the Lower San Gabriel River WASC

09 March 2021

Summary of Study

- This Study aims to use the latest available science to measure water-borne pathogens across watersheds. It will help identify key sources of human health risk, and develop cost-effective protective strategies
- USEPA and academia agree not all sources of bacteria are equally risky, but we do not have the information we need to focus limited resources on the riskiest sources first.
- Objectives of Study
 - Leverage recent USEPA, academic, and stakeholder driven research
 - Produce strategies for incorporation into Program Plans
 - Support informed decisions that help us protect more people sooner

Study Overview

- Nexus to Stormwater and Urban Runoff Capture and Pollution Reduction
 - Study will facilitate improved targeting of pathogen sources and water to capture and/or treat
 - Study could reduce need to capture stormwater for bacteria compliance purposes while improving the protection of human health
 - Study may lead to partnering with various parties, such as wastewater agencies and homeless services agencies, to address human sources of pathogens.

Study Location

Study Location

Scientific Study Details

Problem Statement:

- Waterborne pathogens represent the most significant potential threat to the health of people recreating in and around the ocean and inland waters of Los Angeles County.
- Current standards are based on FIB (fecal indicator bacteria), which are used as proxies for pathogens.
 - FIB are ubiquitous; a vast network of structural control measures would need to be implemented to provide adequate control projected cost over \$5 billion.
 - USEPA and academia agree that human sources of pathogens pose the greatest risk
 - Unless high-risk sources are targeted, water capture projects may receive large FIB loads, but miss the highest risk human sources.

(Continued)

Scientific Study Details (Continued)

Expected Outcomes

- Completion of a needed regional study in LA County to identify the sources of pathogens and the most effective BMPs to address them. Studies have been completed elsewhere identifying human sources of pathogens as the highest driver of risk to human health.
- The latest science will be used to support the reduction of human pathogens and protect human health.
- Combined with scientific advancements, the results will provide an opportunity to improve the current bacteria strategy using source-specific indicators, improved viral detection methods, and risk modeling frameworks.
- The study results will facilitate meaningful, appropriate, productive actions by Permittees that will effectively reduce human health risks.

Scientific Study Details (Continued)

Methodology:

- Study work plan will be developed through a stakeholder-led process with the input of technical experts, including academics.
 - Stakeholder engagement is at the forefront of the study to ensure that diverse viewpoints are incorporated.
- Study will collect samples from beaches and waterbodies. Samples will be analyzed for traditional bacterial indicators, viruses, and human markers during wet and dry weather.
 - Identify areas with highest risk to support a focus on those areas
 - Identify the sources causing the highest risk to focus on those sources
- Study will assess control measure effectiveness and efficiency
 - Identify the best BMPs to address the sources
 - Support planning, applying municipal funds, requests for SCWP funding, and actions by other parties

Scientific Study Details (Continued)

Regional collaboration efforts:

- Small Group Initiated Discussions and built a scope for a Safe, Clean Water Regional Program project
- Presented Approach to E/WMP Groups
- Discussed with proponents of watershed-specific studies
- Discussed with Regional Board staff

Revised study to address concerns

- Clearly focused on human pathogens
- Clarified that study is a component of overall strategy to protect human health
- Clarified that implementation continues during the study
- Recognized that we do not need to wait until the end of the study to take action
- Reduced first year cost of study

Cost & Schedule

Phase	Description	Cost	Schedule
Task 1	Stakeholder Process	\$484,000	7/21 – 6/26
Task 2	Health Risk Assessment	\$5,816,208	7/21 – 9/25
Task 3	Risk Management	\$1,702,100	4/22 - 3/26
Task 4	Application of Study Findings	\$484,000	1/25 — 6/26
TOTAL		\$8,486,308	

Funding Request

WASC	Year 1	Year 2	Year 3	Year 4	Year 5
CSMB	\$45,659	\$333,041	\$322,298	\$319,612	\$53,716
LLAR	\$32,801	\$239,256	\$231,539	\$229,609	\$38,590
LSGR	\$42,810	\$312,259	\$302,186	\$299,668	\$50,364
NSMB	NA	NA	NA	NA	NA
RH	\$29,477	\$215,011	\$208,075	\$206,341	\$34,679
SCR	\$15,378	\$112,168	\$108,550	\$107,645	\$18,092
SSMB	\$47,156	\$343,964	\$332,869	\$330,095	\$55,478
ULAR	\$98,952	\$721,766	\$698,483	\$692,663	\$116,414
USGR	\$48,435	\$353,290	\$341,893	\$339,044	\$56,982
TOTAL	\$360,668	\$2,630,755	\$2,545,893	\$2,524,677	\$424,315

Summary of Benefits

- By developing a better understanding of pathogens present in the region's watersheds, the relative risk to human health they pose, and the effectiveness of various control measures, new or adapted BMPs can be established that improve water quality and reduce human health risks at our beaches and inland waterbodies.
- Short-term: results could be used to protect people from health risks that aren't currently known.
- Long-term: results will enable the targeted placement of BMPs in locations where they can maximize the prevention or treatment of key sources of human pathogens.

Questions and Thank You

Richard Watson Richard Watson & Associates <u>rwatson@rwaplanning.com</u> (949) 394-8495